16,847 research outputs found

    Computation of the radiation characteristics of a generalized phased array

    Get PDF
    With the advent of monolithic microwave integrated circuit (MMIC) technology, the phased array has become a key component in the design of advanced antenna systems. Array-fed antennas are used extensively in today's multiple beam satellite antennas. A computer program based on a very efficient numerical technique for calculating the radiated power (Romberg integration), directivity, and radiation pattern of a phased array is described. The formulation developed is very general, and takes into account arbitrary element polarization, E- and H-plane element pattern, element location, and complex element excitation. For comparison purposes sample cases have been presented. Excellent agreement has been obtained for all cases. Also included are a user guide and a copy of the computer program

    Secondary pattern computation of an offset reflector antenna

    Get PDF
    Reflector antennas are widely used in communications satellite systems because they provide high gain at low cost. In analyzing reflector antennas the computation of the secondary pattern is the main concern. A computer program for calculating the secondary pattern of an offset reflector has been developed and implemented at the NASA Lewis Research Center. The theoretical foundation for this program is based on the use of geometrical optics to describe the fields from the feed to the reflector surface and to the aperture plane. The resulting aperture field distribution is then transformed to the far-field zone by the fast Fourier transform algorithm. Comparing this technique with other well-known techniques (the geometrical theory of diffraction, physical optics (Jacobi-Bessel), etc.) shows good agreement for large (diameter of 100 lambda or greater) reflector antennas

    A proposal for dependent optimization in scalabale region-based coding systems

    Get PDF
    We address in this paper the problem of optimal coding in the framework of region-based video coding systems, with a special stress on content-based functionalities. We present a coding system that can provide scaled layers (using PSNR or temporal content-based scalability) such that each one has an optimal partition with optimal bit allocation among the resulting regions. This coding system is based on a dependent optimization algorithm that can provide joint optimality for a group of layers or a group of frames.Peer ReviewedPostprint (published version

    A numerical method for approximating antenna surfaces defined by discrete surface points

    Get PDF
    A simple numerical method for the quadratic approximation of a discretely defined reflector surface is described. The numerical method was applied to interpolate the surface normal of a parabolic reflector surface from a grid of nine closest surface points to the point of incidence. After computing the surface normals, the geometrical optics and the aperture integration method using the discrete Fast Fourier Transform (FFT) were applied to compute the radiaton patterns for a symmetric and an offset antenna configurations. The computed patterns are compared to that of the analytic case and to the patterns generated from another numerical technique using the spline function approximation. In the paper, examples of computations are given. The accuracy of the numerical method is discussed

    Cavitation Inception - A Selective Review

    Get PDF
    This paper reviews recent developments in selected cavitation research areas which have been active mainly within the past two years. The new understanding resulting from this work is summarized. Research topics discussed are cavitation inception on smooth surfaces, on vortex cavitation and scaling, on the measurement of cavitation nuclei, and on the effects of polymer additives. Because of the selective nature of the review, a fairly comprehensive listing of recent contributions to the literature on these and related aspects of cavitation research is an essential part of the exposition

    Case study of sample spacing in planar near-field measurement of high gain antennas

    Get PDF
    Far field antenna patterns can be reconstructed from planar near field measurements acquired at a sample spacing of lambda/2 or less. For electrically large antennas, sampling at the Nyquist rate may result in errors due to system electronic drift over long acquisition times. The computer capacity may limit the largest size of the near field data set. The requirement to sample at the Nyquist rate is relaxed for high gain antennas which concentrate most of the radiated energy into a small angular region of the far field. The criteria for sample spacing at greater than lambda/e through the use of a priori information of the antenna radiation characteristics are presented. Far field patterns of a 30 GHz dual offset reflector system with a 2.7 m parabolic main reflector are computed from near field data obtained at sample spacings ranging from 0.1 lambda to 10 lambda. The effects of sampling interval and spectrum cutoff on the far field patterns are discussed

    A design concept for an MMIC microstrip phased array

    Get PDF
    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined

    Array trade-off study using multilayer parasitic subarrays

    Get PDF
    The use of multilayer parasitic patch arrays in a microstrip phased array offers many potential advantages. An analytical study of microstrip arrays with high gain multilayer parasitic patch subarrays and conventional patch antennas is presented. It is indicated that a thinned array of half as many multilayer parasitic patch subarrays (per row and column) at twice the spacing will perform as well as the full array of ordinary patch antennas. The criterion for comparison was array gain, 3 dB beamwidth and sidelobe level. The attendant reduction in the required number of patch antennas and consequently, MMIC phase shifters is very significant in terms of array complexity, cost and power loss

    Analysis of a generalized dual reflector antenna system using physical optics

    Get PDF
    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity

    Measurements on fully wetted and ventilated ring wing hydrofoils

    Get PDF
    Force measurements and visual observations were made in a water tunnel on fully wetted and ventilated flows past a family of conical ring wings having a flat plate section geometry. The diameter-chord ratio was varied from one to three, and the total included cone angle was 12 degrees. The fully wetted flows all exhibited separation from the leading edge except for the largest diameter-chord ratio, a result which was in agreement with previous work. The effect of ventilation is to reduce markedly the lift curve slope. Pressure distribution measurements were also made under ventilating conditions for one member of this series. The effect of ventilation over only a portion of the circumference of the ring was also briefly investigated. Large cross forces were developed by such ventilation and some comparisons are made between this method of obtaining control forces and more conventional methods
    • …
    corecore